Meertalige sentimentanalisedienste
luister, dit verstaan.
Ontleed menslike emosies en sentimente deur nuanses in klantresensies, finansiële nuus, sosiale media, ens.
Voorgestelde kliënte
Bemagtig spanne om wêreldleidende KI-produkte te bou.
Daar word tereg gesê dat goeie sake altyd na sy klante luister, maar die vraag is of hulle dit werklik verstaan? Die begrip van menslike sentimente, emosies of opset word dikwels as moeilik beskou. Die oplossing? Sentimentanalise - Dit is 'n tegniek om die beeld wat u produk, diens of handelsmerk in die mark dra, af te lei, te meet of te verstaan.
Twitter:
Volgens 'n studie, 360,000, tweets word elke minuut getwiet
E-posse:
40% van die werknemers ontvang tussen 26-75 e-posse per dag
Meertalige sentimentanalise-dienste vir NLP help jou om groot punte te behaal op klante-ervaring
Regte-wêreld oplossing
Analiseer data om die sentiment van die gebruikers te verstaan
Met die opkoms van sosiale media deel mense dikwels hul ervarings met produkte en dienste aanlyn via blogs, vlogs, nuusartikels, sosiale mediaverhale, resensies, aanbevelings, opsommings, hashtags, kommentaar, direkte boodskappe, mikro-invloede, ens.
Shaip bied u verskillende tegnieke, naamlik emosie-opsporing, sentimentklassifikasie, fynkorrelige analise, aspekgebaseerde analise, meertalige analise, ensovoorts om betekenisvolle insigte uit gebruikers-emosies en sentimente te ontdek. Ons help u om vas te stel of die sentiment in die teks negatief, positief of neutraal is. Taal is dikwels dubbelsinnig of uiters kontekstueel, wat dit vir masjiene baie moeilik maak om te leer sonder hulp van mense, en daarom word opleidingsdata wat deur mense opgemerk word, van kritieke belang vir ML-platforms.
Hoe ons kan help
- Voer tekssentimentanalise uit van bv.
- produk resensies
- diens resensies
- fliekresensies
- e-pos klagtes / terugvoer
- klante oproepe en vergaderings
- Analiseer sosiale media-inhoud, insluitend:
- Tweets
- Facebook-plasings
- Blog kommentaar
- Forums -Quora, Reddit
- Verskaf meertalige sentimentanalisedata as opleidingsdata vir masjienleer
Voordele
- Analiseer en verwerk groot datastelle
- Gebruik menslike intelligensie om die sentiment van die kliënt akkuraat te bepaal
- 'N Buigsame werkerskorps bestaande uit domeinkenners
- Skaal soos u groei
- 95% gehalteversekerde resultate
Besigheidsvoordele
- Monitor die gesondheid van die handelsmerk
- Bestuur handelsnaam reputasie
- Kompetisie-ontleding
- Verbetering van kliëntediens
- Beter bemarkingsveldtogte gebaseer op die pols van u gehoor
Tipes sentimentontledingsparameters
Polariteit
fokus op die resensies wat u handelsmerk aanlyn ontvang (positief, neutraal en negatief)
Emosies
konsentreer op die emosie wat u produk of diens in u klante laat dink (gelukkig, hartseer, teleurgesteld, opgewonde)
dringendheid
fokus op die onmiddellike gebruik van u handelsmerk of om 'n effektiewe oplossing vir gebruikers se probleme te vind (dringend en wagbaar)
Voorneme
fokus daarop om vas te stel of u gebruikers belangstel om u produk of handelsmerk te gebruik of nie
Tipes sentimentanalise -dienste
Emosie-opsporing
Hierdie metode bepaal die emosie wat gebruik word om u handelsmerk vir 'n doel te gebruik. As hulle byvoorbeeld klere by u e-handelswinkel gekoop het, kon hulle tevrede wees met u versendingsprosedures, die kwaliteit van die klere of die verskeidenheid keuses of teleurgesteld wees daarmee. Afgesien van hierdie twee emosies, kan 'n gebruiker ook enige spesifieke of 'n mengsel van emosies in die spektrum ondervind. Een van die tekortkominge van hierdie tipe is dat gebruikers op verskillende maniere hul emosies kan uitdruk - deur middel van teks, emoji's, sarkasme, en meer. Die model moet sterk ontwikkel word om die emosie agter hul unieke uitdrukkings te bespeur.
Fynkorrelige analise
'N Meer direkte vorm van analise behels die vasstelling van die polariteit wat verband hou met u handelsmerk. Van baie positief tot neutraal tot baie negatief, kan gebruikers enige eienskappe rakende u handelsmerk ervaar, en hierdie eienskappe kan 'n tasbare vorm aanneem in die vorm van graderings (bv. Op sterre gebaseer) en al wat u model moet doen, is om hierdie verskillende vorme van graderings te ontgin uit verskillende bronne.
Aspekgebaseerde analise
Resensies bevat dikwels goeie terugvoer, en aan die ander kant neem die aspekgebaseerde sentimentontleding u 'n stap verder. Hier wys die gebruikers oor die algemeen 'n paar goeie of slegte dinge in hul resensies af, behalwe dat hulle beoordelings en emosies uitspreek. Byvoorbeeld - die reisdiensgenoot was buitengewoon onbeskof en traag. Ons moes 'n uur wag voordat ons die reisplan vir die dag gekry het. '
Wat onder die emosies lê, is twee belangrike take uit u sakebedrywighede. Dit kan reggestel word, verbeter of herken word deur middel van aspekgebaseerde analise.
Veeltalige analise
Dit is die beoordeling van sentiment in verskillende tale. Die taal kan afhang van die streke waarheen u werk, lande waarheen u gestuur word, en meer. Hierdie analise behels die gebruik van taalspesifieke ontginning en algoritmes, vertalers in die afwesigheid daarvan, sentimentleksikons, en meer.
Gevalle met sleutelgebruik
Brandmonitering
Monitering van sosiale media
Stem van die kliënt
Kliëntediens
Hoekom Shaip
Om u AI -inisiatief effektief te implementeer, benodig u groot hoeveelhede gespesialiseerde opleidingsdatastelle. Shaip is een van die min ondernemings in die mark wat betroubare opleidingsdata van wêreldgehalte verseker wat op groot skaal voldoen aan die regulatoriese/ AVG-vereistes.
Vermogens vir data-insameling
Skep, saamstel en versamel pasgemaakte datastelle (teks, spraak, beeld, video) van meer as 100 nasies regoor die wêreld, gebaseer op pasgemaakte riglyne.
Buigsame werksmag
Maak gebruik van ons wêreldwye werkerskorps van meer as 30,000 XNUMX+ ervare en erkende bydraers. Buigsame taakopdrag en real-time werksmagkapasiteit, doeltreffendheid en vorderingsmonitering.
Kwaliteit
Ons eie platform en vaardige personeel gebruik verskeie kwaliteitsbeheermetodes om te voldoen aan of oortref die gehaltestandaarde wat gestel word vir die versameling van KI-opleidingsstelle.
Divers, akkuraat en vinnig
Ons proses vaartbelyn, die insamelingsproses deur makliker taakverdeling, bestuur en data -opname direk vanaf die app- en webkoppelvlak.
Data Security
Handhaaf volledige vertroulikheid van data deur privaatheid ons prioriteit te maak. Ons verseker dat dataformate beleid beheer en bewaar word.
Domeinspesifisiteit
Gekurateerde domeinspesifieke data wat versamel is uit bedryfspesifieke bronne gebaseer op riglyne vir die versameling van kliëntedata.
Aanbevole bronne
Blog
Die wat, waarom en hoe van sentimentanalise
Sentimentanalise is die proses om die beeld wat u produk, diens of handelsmerk in die mark dra, af te lei, te meet of te verstaan. As dit te ingewikkeld klink, kan ons dit verder verfyn.
Oplossing
AI -opleidingsdata vir gesigherkenning
Bespeur outomaties een of meer menslike gesigte op grond van gesiglandmerke in 'n prent of video. Soek 'n bestaande databasis van menslike gesigte om te vergelyk en te pas om 'n intelligente gesigsherkenningsplatform te bou.
Blog
Benoemde Entiteitserkenning (NER) – Die konsep, tipes en toepassings
Elke keer as ons 'n woord hoor of 'n teks lees, het ons die natuurlike vermoë om die woord te identifiseer en te kategoriseer in mense, plek, ligging, waardes en meer. Mense kan 'n woord vinnig herken, dit kategoriseer en die konteks verstaan.
Gebruik AI om die besigheid se prestasie te verbeter deur middel van klante -ervaring
Algemene vrae (FAQ)
Sentimentanalise is die proses om die beeld wat u produk, diens of handelsmerk in die mark dra, af te lei, te meet of te verstaan. As dit te ingewikkeld klink, kan ons dit verder verfyn. Sentimentanalise word ook beskou as meningsontginning. Met die opkoms van sosiale media het mense meer openlik begin praat oor hul ervarings met produkte en dienste aanlyn deur middel van blogs, vlogs, stories oor sosiale media, resensies, aanbevelings, opsommings, hashtags, kommentaar, direkte boodskappe, mikro-invloede, en ons is seker dat u self 'n lys kan uitdink. As dit aanlyn gebeur, laat dit 'n digitale voetspoor van die uitdrukking van 'n persoon se ervaring. Hierdie ervaring kan nou positief, negatief of bloot neutraal wees. Sentimentanalise is die ontginning van al hierdie uitdrukkings en ervarings aanlyn in die vorm van tekste.
- polariteit: fokus op die resensies wat u handelsmerk aanlyn ontvang (positief, neutraal en negatief)
- Emosies: konsentreer op die emosie wat u produk of diens in u klante laat dink (gelukkig, hartseer, teleurgesteld, opgewonde)
- Dringendheid: fokus op die onmiddellike gebruik van u handelsmerk of om 'n effektiewe oplossing vir gebruikers se probleme te vind (dringend en wagbaar)
- Bedoeling: fokus daarop om vas te stel of u gebruikers belangstel om u produk of handelsmerk te gebruik of nie
- Reëlgebaseerde: Dit is hier waar u 'n reël vir u model handmatig definieer om sentimentanalise uit te voer op die data wat u het. Die reël kan 'n parameter wees wat ons hierbo bespreek het - polariteit, dringendheid, aspekte, en meer.
- Outomatiese: Hierdie aspek van sentimentanalise werk volledig op masjienleeralgoritmes. Hierin is daar geen menslike ingryping nodig nie en word daar handreëls vir 'n model gestel om te funksioneer. In plaas daarvan word 'n klassifiseerder geïmplementeer wat die teks evalueer en die resultate lewer.
- Baster: Die akkuraatste van die modelle, hibriede benaderings, meng die beste van albei wêrelde - gebaseer op reëls en outomaties. Hulle is meer presies, funksioneel en word deur ondernemings verkies vir hul sentimentontledingsveldtogte.
- Emosie-opsporing
- Fynkorrelige analise
- Aspekgebaseerde analise
- Veeltalige analise
'N Ontleding van sentiment op sosiale media meet die gevoelens van kliënte en vertel die gevoelens van u kliënt oor u handelsmerk of produk aanlyn deur gebruikers emosies, graderings en opinies te ontleed.
- Handelsmerkmonitering
- Monitering van sosiale media
- Marknavorsing
- Stem van die kliënt
- Kliëntediens